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c. exploring issues in parallelizing the algorithm. In what follows below, we will
not make detailed reference to the algorithm, except to distinguish the two basic
compqnents of memory search - a. concept refinement, which goes from an abstract
memory structure and some components of it to the most specific version of that
memory structure that contains those components, and b. concept reference, which
uses concept sequences to go from references to certain component concepts to the
l arger concept that contains those concepts. Concept refinement, f or example,
go3es from "a communication event by Milton Friedman" to 'Milton Friedman's argument
about interest rates." Concept reference goes from "interest rates", and/ soar"
to the concept of rising interest rates.t

14. sueIecT TRMS I&. mutmu 00 PAGES
12

17. SICONTV OASSWICATMO B EUT LSWC~O 3 EJIfOASIAIUA ASR

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
I NIN114"i2WISMSWAN" Form 2" (Rev. .-49)



1 Progress During the Current Period ( 6 /87 -

5/88)

Work in the current period has continued in two primary areas:

" Economic Reasoning: DMAP - Chris Riesbeck, research scientist, and
Charles Martin.

* Case-based planning - continuing work in the vein of Kris Hammond's
CHEF progranm, conducted by Eric Jones.

Jones and Martin are advanced graduate students. Their work will be con-
tinued by additional graduate students.

We discuss each of these efforts below.

2 Integrated Incremental Case-Based Under-
standing and Explanation: DMAP

Research Goals

We have the following goals for our research with the direct memory access
algorithm for understanding and inference:

" using the DMA algorithm to carry out larger scale case-based reasoning

" improving the robustness of the understander

" exploring issues in parallelizing the algorithm

In what follows below, we will not make detailed reference to the algorithm,
except to distinguish the two basic components of memory search

" concept refinement, which goes from an abstract memory structure and
some components of it to the most specific version of that memory struc-
ture that contains those components, and
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* concept reference, which uses concept sequences to go from references _&
to certain component concepts to the larger concept that contains those 3
concepts. iced

Concept refinement, for example, goes from "a communication event by Mil- cation

ton Friedman" to "Milton Friedman's argument about interest rates." Concept
reference goes from "interest rates", "will" and "soar" to the concept of rising
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Case-based reasoning with the DMA Algorithm

Although developed for parsing, the DMA algorithm is a general process for
searching memory and creating new memory structures. As such, it can be
used to implement the other memory-based processes that we have studied
at Yale, including reminding, failure and explanation-based generalization, and
case-based reasoning. Currently, every program at Yale and elsewhere that does
case-based reasoning has its own idiosyncratic model of dynamic memory and
its own version of processes to search and extend that memory. In particular,
most of these programs have two kinds of knowledge, represented in two very
different ways:

" domain-specific facts, represented declaratively in Memory Organization
Packets (MOPs) [Sch82], and

" domain-specific processes, represented procedurally in either Lisp code or
IF-THEN rules.

In the DMA parser/understander (DMAP), however, all domain knowledge
is represented declaratively, either in MOPs or in concept sequences attached to
MOPs. Only domain-independent knowledge about searching and instantiating
memory structures and recognizing concept sequences appears in Lisp code.

This unified form of knowledge representation has obvious benefits for reduc-
ing redundancy in existing systems, which sometimes have to represent the same
information, e.g.,that the actor of a communication event must be a human, in
both MOP and rule form. The unified approach also supports learning much
better. From prior research, we know something about learning new MOPs
through generalization and/or explanation [Sch86]. But learning new rules is
equivalent to automatic programming, and is not in general a tractable problem.
Since DMAP only has MOPs and concept sequences, the learning problem is
much more constrained.

To be specific, one of our central research goals is to implement learning
by case-based explanation in the economic reasoning domain, using DMAP.
Case-based explanation, using explanation patterns (XPs) is currently being
explored in the SWALE system [Kas86, LO86]. The focus of that research is on
generating creative explanations for highly anomalous situations. The problem
the program faces is one where no normal explanation holds, so it must explore
the larger space of less obvious possibilities.

The focus of our research will be on generating plausible explanations for
failures in understanding economic reasoning. When reasoning about things like
the effects of interest rates on the trade deficit, or of the stock market crash on
employment, the problem is that there are too many explanations, some of them
inconsistent with others. The first step in making sense of economic arguments
is to organize them into larger patterns, such as monetarist versus supply-side
arguments. These patterns abstract out the basic nature of the different indi-
vidual arguments. With these patterns made explicit, a new argument can be
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more easily understood, not by trying to unravel the exact causality of the ar-
gument, which is often vaguely or even incorrectly specified, but by recognizing
what basic abstract pattern the argument best fits. Cues to these patterns in-
clude not only the elements of the argument itself, but also who is giving it, and
in what context. Thus, knowing that Milton Friedman is giving an argument
mentioning the money supply, in a debate with Thurow in Newsweek, is enough
to cause the recognit.on of Friedman's basic monetarist explanation pattern.

Recognizing the basic explanation pattern involved can then heuristically
improve the system's ability to evaluate the new argument. If the system al-
ready has classified the basic monetarist position as plausible, but probably
incomplete, it can likewise, without extensive causal simulation, guess that the
new argument is plausible but not the whole story. Note that the "depth" to
which the system understands the new argument will follow directly from how
detailed and accurate the existing explanation pattern is. In this way, a DMA-
based case-based reasoner using explanation patterns can be used to model both
novice and expert urderstanding, by varying the detail of the XPs stored.

Making the Parser more Robust

The DMA approach to parsing and understanding has achieved several of our
original goals. It has removed the memory-parser bottleneck, so that much more
knowledge can be used when understanding text than ever before. It has become
the basis for a general scheme for representing inference processes, as described
above. It has inspired a new theoretical model of understanding as a memory
search rather than meaning construction. It handles lexical ambiguity, the most
common phenomeno-i ignored by almost every parsing system, smoothly and
directly.

However, one of our major criticisms of other language understanding ap-
proaches still applies to the DMA system: fragility in the face of input that is
either ill-formed or unexpected. Though there is certainly a difference between
bad input and missing knowledge, we think that the same solutions will apply
in both cases.

The core of our approach will be in extending the system's ability to know
when it's in trouble. Currently, the understander has MOPs and concept se-
quences for recognizing when new inputs fail to match existing structures and
for repairing these failures. For example, if the system reads "Joe Blow says
that liberal monetary policies are driving up interest rates," it recognizes that
this matches an argument given by Milton Friedman. The mismatch in who
is giving the argument is reconciled by a structure that hypothesizes that Joe
Blow is a monetarist like Milton Friedman. In this way, limited forms of miss-
ing knowledge can be filled in, as long as the concept sequences recognize the
relevant memory structures. That is, some problems in concept refinement can
be handled, as long es concept reference is correct.

Extending this a iproach means handling cases when problems arise with
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concept reference, either because the text uses some form that the parser doesn't
have a sequence for, or because the text is simply ill-formed. The DMA system
needs to monitor how well the concept sequences are doing. This means we
need a good characterization of what normal, successful activation of concept
sequences looks like, as well as what things look like when there are problems.
For example, the system can tell when an unknown word has been read because
no concept sequences are advanced. It is harder to know that words are being
used in unknown ways, because concept sequences will be begun or advanced
as if things are OK, but later these sequences will not be able to complete, or,
if they do, the concept they reference will not connect to any active concept
sequence.

Besides being able to characterize when understanding problems are ocur-
ring, we will also of course need to specify what to do to correct those problems.
When people have trouble understanding something, they go back and read it
more carefully. DMAP, like most systems, is always reading carefully. This
is appropriate for the moment, since the domain of economic argument calls
for careful reading. Therefore, going back and reading more carefully doesn't
make sense. It does make sense however to try reading less carefully. Since
DMAP has already read the text carefully and had trouble, it doesn't have the
knowledge necessary to understand all of the text. However, it probably can
handle most of the text, if it just ignores the problematic part, and uses some
default interpretation instead. To determine which parts of the text to ignore,
one possibility is to have DMAP pick the best partially matching concept se-
quences. The research problem then becomes one of defining and implementing
"best match."

Parallel DMA Understanding

Our third research goal, which is somewhat independent of the other two, is
to investigate ways in which the DMA algorithm can be implemented on par-
allel hardware. Much of the algorithm is already inherently parallel, because
it involves simple graph search. Both concept refinement to specializations of
memory structures, and concept reference via multiple concept sequences can
be done in p -rallel. However, as with all research into parallel algorithms, there
are hard problems to be solved in coordinating the results of parallel processes.
Furthermore, since the parallel machine we are most interested in experiment-
ing with is the Connection Machine, there are hard implementation problems
involved in representing large knowledge structures in a distributed efficient
manner.

4



3 Opportunistic Case-based Planning Using Proverbs

Faced with a straightforward, well specified planning problem, we believe that
people proceed by re..rieving old standard plans which work or almost work in
the new situation and modifying them to fit the new circumstances, as demon-
strated in the CHEF program [Ham86]. That is, people build plans starting
from cases which are known specific plans. Although this model provides a
powerful account of mundane planning, as a model of all human planning it is
seriously incomplete. In addition to straightforward planning problems, people
frequently encounter problems which are novel or poorly specified and for which
no ready-made solutions are immediately apparent.

This research focusses on case-based planning in complex competitive do-
mains where few ready-made solutions are to be found. When the planner is
unable to straightforwardly find and adapt a standard plan it falls back on cases
embodying more general planning advice and attempts to adapt these to the
situation at hand. The information gained from adapting these cases guides
retrieval and modification of appropriate standard plans.

This research addresses three related questions:

1. Representation: What is the general planning knowledge these cases
embody and how is it represented?

2. Adaptation: How is general planning knowledge adapted to specific
problems?

3. Learning: How can a planner learn from adapting general cases to specific
problems?

Representation and the role of proverbs

Consider the following thought experiment. Pick a proverb and your favorite
current life crisis. Attempt to see how the proverb could be relevant to resolving
the crisis. Chances are, almost regardless of which proverb you choose, you won't
come away entirely empty handed. If you are lucky, you may even arrive at a
genuinely new insight or a plan of action for dealing with some aspect of your
problem.

We draw a moral from the human capacity to perform this kind of reasoning.
Proverbs constitute a huge body of culturally shared planning advice in the form
of cases. We claim that when no viable standard plan can be determined, people
turn to cases expressed in a vocabulary suitable for representing the planning
advice that proverbs express.

Two of our main research objectives include specifying a vocabulary for
representing general "3lanning knowledge and producing a catalog of cases rep-
resented in this vocabulary. Representing proverbs will provide a good arena
for testing the power of this vocabulary.
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Adaptation and system architecture

As a framework for exploring how general planning knowledge can be adapted
to specific situations, we propose a theory of planning which combines a sim-
ple plan retriever and plan modifier with a powerful adapter. The plan
retriever and modifier together form a minimal case-based planner of a conven-
tional sort - that is, a planner whose only cases are standard plans or plan
sketches. The adapter is invoked whenever the minimal planner reaches an im-
passe. This will happen when some piece of knowledge needed to retrieve or
modify a standard plan is not immediately available. The adapter forces a fit
between cases embodying general planning advice and the problem situation
with the aim of making such missing knowledge available. The output of the
adapter is a better specification of the goals of the planner and/or an elaborated
description of the problem situation.

The adaptation process must be fully integrated into the planning process
as a whole. By this we mean that it should be as responsive as possible to the
functional requirements of the plan specifier and modifier, and it should make
available to these components the information they need as early as possible.
This imposes three basic constraints on the adapter. First, it must be able to
notice opportunities: it must be able to suggest new goals or specifications of
goals to the plan retriever and plan modifier, even when these emerge as a side
effect of adapting a pattern for some other purpose. Second, the adapter must
be incremental: it should only spend effort specifying goals and elaborating
descriptions of the problem situation to the extent needed to further subtasks
that the plan retriever and plan modifier are pursuing. Finally, the adapter
must be selective. There are typically many ways one can attempt to adapt a
general case to a specific situation. Choices must be made which tend to lead
to the construction of viable plans, given the planner's current mandate and
resource limitations.

In order to achieve full integration of the adapter with the rest of the plan-
ner, the impasses the planner encounter .-nust be explicitly represented. If the
adapter is to be able to detect unexpected opportunities to resolve existing im-
passes, it has to be able to retrieve the impasses from memory in appropriate
circumstances and reason about the likelihood of being able to resolve them in
light of the knowledge it is currently making available. Moreover, the require-
ments of incrementality and selectivity really amount to demanding that the
adapter itself be a planner of sorts, where the goals are impasses of the minimal
case-based planner. To be able to flexibly plan for these goals, the adapter has
to be able to reason about them, which in turn requires explicit representations.

Explicitly representing impasses leads very naturally to the idea of building
the planning system on top of an opportunistic memory architecture. An op-
portunistic memory architecture is a processing framework in which goals are
indexed in terms of the knowledge structures used to plan for them, in a way
that allows the goals to actively guide the system's problem solving behavior.



Here, the goals are tae impasses. In its simplest incarnation, an opportunistic
memory architecture maintains a queue of active goals and goes through the
fo!lowing basic problem solving cycle:

1. Pick the highest priority active goal and start working on it.

2. Every time a knowledge structure is acted on, check to see whether the
action being performed on it could impact any of the systems' goals. This
amounts to searching memory for relevant goals not under active pursuit,
starting from the memory structure currently being processed. If any goals
are found, then add them to the goal queue. If one of the new goals has a
higher priority than the current goal being pursued, and the current goal
can be suspended, then put the current goal back on the queue and start
working on the new one.

3. Go to step 1.

We will implement the planner in an opportunistic memory architecture. In
so doing, we will address three subsidiary research questions:

1. What exactly should count as an impasse and how should impasses be
represented?

2. How should impasses be indexed in a large memory so that they can be
straightforwardly detected when possible opportunities to satisfy them
arise?

3. How are impasses detected?

Learning

The planner should be able to learn from its experience. A potential for learning
exists whenever an impasse is resolved. At the very least, after generating an
acceptable candidate plan, the system should be able to update its knowledge
structures so that if the same problem were resubmitted to it no impasses would
arise. That is, the minimal case-based planner would by itself be sufficient to
the task zenerating the plan. Addressing this learning issue is a long term goal
of this research.

Implementing the planner

We are currently working on an initial implementation of a planner satisfying
the above description which constructs plans in the domain of terrorist crisis
management. The top level goals of a terrorist crisis manager have to do with
finding favorable ways to resolve specific crises and finding ways to avoid similar
crises in the future. The input to the planner is a high level specification of a
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set of goals and an initial description of an ongoing crisis. The output is a set
of plan suggestions.

A brief transcript of the current implementation appears in the next section.
Throughout the course of this research, we will be making the following

simplifying assumptions.

* Rather than trying hard to preselect cases embodying general planning
knowledge by an estimate of their likely utility, the planner will attempt
to adapt a wide range of cases to each problem situation. In any given
instance, those which don't pan out quickly will be abandoned.

" Instead of trying to generate complete workable plans, the planner will
generate large numbers of plan sketches, only a certain proportion of which
will seem both interesting and plausible.

Conclusion

The goal of this research is to push forward the theory of case based planning
to the point where it can account for constructing plausible plans of action
in situations where existing case-based planners would fail because no standard
solution seems available. The basic hypothesis is that a case-based planner solves
these more difficult planning problems by adapting cases embodying general
planning knowledge to the problem.

As part of working towards this goal, we hope to further our understanding
of integrated processing and learning in an opportunistic memory.

4 Case-based Planning Transcript

The following two pages are a transcript of the case-based planning program
operating in the domain of terrorist crisis management.

8



5 Publications during the Current Period

Refereed Papers

" Birnbaum, L. Let's put the Al back in NLP. In Proceedings of the Third
TINLAP. Las Cruces, NM. 1987.

" Birnbaum, L. Inferential memory and linguistic creativity. Journal of
Metaphor and Symbolic Activity. To appear.

" Farrell, R. Intelligent Case Selection and Presentation. Proceedings of
the 11th International Joint Conference on Artificial Intelligence. Milan,
Italy, August, 1987.

" Ram, A. AQUA: Asking Questions and Understanding Answers. Proceed-
ings of the 6th AAAI. Seattle, WA. July, 1987.

" Schank, R.C. The Current State Of AL: One Man's Opinion. Scientific
Datalink Microfiche Collection of Yale Al Technical Reports. AI Maga-
zine, 8(4), Winter, 1987.

" Schank, R.C., Collins, G. and Hunter, L. Transcending Inductive Category
Formation in Learning. Behavioral and Brain Sciences, 9(4), 1986.

" Schank, R.C., and Kass, A. Representing meaning in Man and Machine,
To appear in Versus.

" Schank, R.C., and Kass, A. Natural Language Processing, What's really
involved? In Proceedings of the Third TINLAP. Las Cruces, NM. 1987.

" Slade, S. The Yale Artificial Intelligence Project: A Brief History. Sci-
entific Datalink Microfiche Collection of Yale AI Technical Reports. Al
Magazine, 8(4), Winter, 1987.

Technical Reports

" Bain, W. Case-base Reasoning: A Computer Model of Subjective Assess-
ment. Report 470, Yale Department of Computer Science, 1986.

" Birnbaum, L. Integrated processing in planning and understanding. Re-
port 489, Yale Department of Computer Science, 1986.

" Hammond, K.J. Case-based Planning: An Integrated Theory of Planning,
Learning, and Memory. Report 488, Yale Department of Computer Sci-
ence, 1986.

" Hovy, E.H. Generating Natural Language Under Pragmatic Constraints.
Report 521, Yale Department of Computer Science, May 1987.
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" Kass, A., and Leake, D. Types of Explanations. Report 523, Yale Depart-
ment of Computer Science, March 1987.

* Schank, R.C., and Farrell, R. Creativity in Education: A Standard for
Computer-based Teaching. Report 518, Yale Department of Computer
Science, January, 1987.

" Schank, R.C., and Owens, C. Ten Problems in Artificial Intelligence. Re-
port 514, Yale Department of Computer Science, January, 1987.

Presentations by Roger Schank

" Mechanical Creativity. Keynote speaker. Artificial Intelligence Society of
New England. Yale University, New Haven, CT. October 31, 1986.

" Six Fundamental Problems in Al. Invited speaker. Knowledge and Data,
IFIP. Portugal. November 3-7, 1986.

" Keynote speaker. The First Al Congress. Melbourne, Australia. Novem-
ber 17-21, 1986.

" Participant. DARPA Workshop on Case-based Reasoning. Georgia Insti-
tute of Technology, Atlanta, GA. December 2-3, 1986.

" The 10 Fundamental Problems in Al. Invited speaker. Emory Univerisity,
Atlanta, GA. December 4, 1986.

" Invited Panel. Theoretical Issues in Natural Language Processing (TIN-
LAP). New Mexico State University, Las Cruces, NM. January 6-9, 1987.

" Mechanical Creativity. Keynote speaker. Museum of Science, Boston,
MA. January 29, 1987.

" Mechanical Creativity. Invited speaker. Carnegie-Mellon University, Pitts-
burgh, PA. February 4, 1987.

" Third Al Satellite Symposium, An Al Productivity Roundtable. Invited
panel. Texas Instruments, Dallas, TX. March 10, 1987 (first taping). April
8, 1987 (live broadcast).

" Active Learning and Case-based Reasoning. Invited speaker. Interna-
tional Symposium on Culture, Computer Science, and School System.
AULA Foundation, Barcelona, Spain. April 1-4, 1987.

" Ten Problems in Al. Invited speaker. Ohio State University, Columbus,
OH. April 24, 1987.

* Ten Problems in Al. Invited speaker. New York University, New York,
NY. Aprii 30, 1987.
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" Invited panel. Theoretical Issues in Conceptual Information Processing.

University of Maryland, College Park, MD. June 4-5, 1987.

" Invited speaker. Equitable Forum. New York, NY. June 26, 1987.

" Invited speaker. McKinsey Group. Princeton, NJ. July 8, 1987.

" Where Al is going and why it never got there. Invited speaker. Techno-
logic Partners. Cambridge, MA. September 17, 1987.

Presentations by Other Participants

" Birnbaum, L. Integrated models of explanatory inference in story under-
standing. Invited speaker. New York University, New York, NY. Novem-
ber, 1986.

" Birnbaum, L. Artificial Intelligence and the functional view of the mind.
Killeen Chair lecture. St. Norbert College, De Pere, WI. February, 1987.

* Birnbaum, L. A gentle attack on the role of logic in Al. Invited commenta-
tor. MIT workshop on the Foundations of Artificial Intelligence. Dedham,
MA. June 1987.

" Birnbaum, L., Riesbeck, C., and Slade, S. Invited participants. DARPA
Workshop on spoken language processing. University of Pennsylvania,
Philadelphia, PA. March 1987.

" Ram, A. Questions and Explanation. Artificial Intelligence Society of New
England (AISNE). New Haven, CT. October, 1986.

" Ram, A. Questions and Explanation. Yale Computer Science Department
Liaison Program. New Haven, CT. November, 1986.

" Slade, S. The Future of AL: Learning from Experience. Task Force Meet-

ing: Future and Impacts of Artificial Intelligence. University of Vienna,
Vienna, Austria. August 21-23, 1987.

Books

" Charniak, E., Riesbeck, C., McDermott, D., and Meehan, J. Artificialin-
telligence Programming. Second Edition. Lawrence Erlbaum Associates,
1987.

" Schank, R. Explanation Patterns: Understanding Mechanically and Cre-
atively, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

" Schank, R.C. The Creative Attitude: Learning to Ask and Answer the
Right Questions. with P. Childers. McMillan and Company, New York,

NY, in press.
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" Schank, R. and Riesbeck, C. Inside Computer Learning, Lawrence Erl-
baum Associates, in preparation.

" Slade, S. The T Programming Language: A Dialect of LISP. Prentice-
Hall, Englewood Cliffs, NJ, 1987.

Sections of Books

" Anderson, J.R., Boyle, C.F., Farrell, R., and Reiser, B.J. Cognitive Princi-
ples in the Deisgn of Computer Tutors, in Modelling Cognition, P. Morris
(ed.), 1987.

* Schank, R.C. and Farrell, R. Creativity in Education: A Standard for
COmputer-based Teaching, in Machine-mediated Learning, Friedman, E.,
and Resnikoff, H. (eds.), Taylor-Francis: New York, NY, 1987.

* Schank, R.C., and Farrell, R. Memory, in Introduction to Cognitiv- Sci-
ence, McTear, M.F. (ed), Ellis Horwood, 1987.

Schank, R.C., and Kass, A. Explanations, Machine Learning, and Cre-
ativity, in Machine Learning III, forthcoming.

" Schank, R.C., and Owens, C. Understanding by Explaining Expectation
Failures, in Communication Failutes in Discourse, R. Reilly (ed.), North-
Holland, 1987.

" Schank, R.C., and Owens, C. The Mechanics of Creativity, in The Age of
Intelligent Machines, R. Kurzweil (ed), MIT Press, forthcoming.

" Schank, R.C., and Ram, A. Explanation and Creativity, in Advances in
Cognitive Science, N. Sharkey (ed.), forthcoming.

* Schank, R.C., and Slade, S. Social and Economic Impacts of Artificial
Intelligence, in Impacts of Artificial Intelligence, R.Trappl (ed.), Amster-
dam: North-Holland, 1986.

* Schank, R.C., and Slade, S. The Future of Artificial Intelligence: Learn-
ing from Experience. In Future and Impacts of Artificial Intelligence, R.
Trappl (ed.), Forthcoming.
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